Optimal Taxation and Public Provision for Poverty Minimization

Ravi Kanbur (Cornell University)
Jukka Pirttilä (UNU-WIDER)
Matti Tuomala (University of Tampere)
Tuuli Ylinen (Aalto University)

UNU-WIDER Conference on Inequality
5 September 2014
Introduction

- Many developing countries suffer from high inequality
- Typically the only way for a government to affect inequality and poverty is via redistributive taxes and transfers, as well as public good provision
- In low-income countries, these systems are still in early age: need to upgrade towards more comprehensive systems
Our paper

- Characterize the optimal redistributive tax-transfer system for developing countries
 - Labour income tax, commodity taxes
 - Cash transfer, public provision of public and private goods
- Employ optimal tax theory framework (Miryles 1971)
Our paper

▶ Modifications to optimal tax framework for developing countries

▶ Depart from fully nonlinear taxes
 ▶ Consider a linear income tax, universal benefit
 ▶ Follow linear tax literature (Dixit & Sandmo 1977, Piketty & Saez 2013)

▶ Depart from social welfare maximization as objective (based on individual utilities)
 ▶ Consider poverty minimization as explicit objective
 ▶ Follow general non-welfarist literature (Seade 1980, Kanbur, Pirttilä & Tuomala 2006) and poverty minimization literature (Kanbur, Keen & Tuomala 1994, Pirttilä & Tuomala 2004)
Our paper

- Modifications to optimal tax framework for developing countries
- Depart from fully nonlinear taxes
 - Consider a linear income tax, universal benefit
 - Follow linear tax literature (Dixit & Sandmo 1977, Piketty & Saez 2013)
- Depart from social welfare maximization as objective (based on individual utilities)
 - Consider poverty minimization as explicit objective
 - Follow general non-welfarist literature (Seade 1980, Kanbur, Pirttilä & Tuomala 2006) and poverty minimization literature (Kanbur, Keen & Tuomala 1994, Pirttilä & Tuomala 2004)
Our paper

- Modifications to optimal tax framework for developing countries
- Depart from fully nonlinear taxes
 - Consider a linear income tax, universal benefit
 - Follow linear tax literature (Dixit&Sandmo 1977, Piketty&Saez 2013)
- Depart from social welfare maximization as objective (based on individual utilities)
 - Consider poverty minimization as explicit objective
 - Follow general non-welfarist literature (Seade 1980, Kanbur, Pirttilä&Tuomala 2006) and poverty minimization literature (Kanbur,Keen&Tuomala 1994, Pirttilä&Tuomala 2004)
Preview of results

- Changing from welfare maximization to poverty minimization, some of the standard optimal tax results change
 - More sensitive to labour supply behaviour
 - Uniform commodity taxes are never optimal; favour differentiated commodity taxes
Preview of results

- Changing from welfare maximization to poverty minimization, some of the standard optimal tax results change
 - More sensitive to labour supply behaviour
 - Uniform commodity taxes are never optimal; favour differentiated commodity taxes
Changing from welfare maximization to poverty minimization, some of the standard optimal tax results change

- More sensitive to labour supply behaviour
- Uniform commodity taxes are never optimal; favour differentiated commodity taxes
Outline

Introduction

Model of optimal taxation for developing countries
 Model basics
 Linear income taxation
 Linear income tax & Public provision of public and private goods
 Linear income tax & Commodity taxation

Summary and applications of the model
 Summary
 Applications/Future work
Outline

Introduction

Model of optimal taxation for developing countries
 Model basics
 Linear income taxation
 Linear income tax & Public provision of public and private goods
 Linear income tax & Commodity taxation

Summary and applications of the model
 Summary
 Applications/Future work
The model

- Government’s instruments:
 - linear income tax τ
 - universal lump-sum benefit b
 - public provision: pure public good G or quasi-private good $s = G + h$
 - commodity taxes (subsidies) t_j
The model

-
 - \(N \) individuals with labour income \(z^i = w^i L^i \), consumption \(c^i = (1 - \tau)z^i + b \)

- Government’s objective
 - Social welfare maximization
 \[
 \max \sum_i W\left(V^i(1 - \tau, b) \right) \text{ s.t. } \tau \sum_i z^i = Nb + R
 \]
 - General non-welfarism
 \[
 \max \sum_i F(c^i, z^i) \text{ s.t. } \tau \sum_i z^i = Nb + R
 \]
 - Poverty minimization as a case of non-welfarism
 \[
 \sum_i F(c^i, z^i) = \sum_i D\left(c^i, \bar{c} \right) \left(= \frac{1}{N} \sum_{i=1}^{h} \left(\frac{\bar{c} - c^i}{\bar{c}} \right)^\alpha \right)
 \]
The model

- N individuals with labour income $z^i = w^i L^i$, consumption $c^i = (1 - \tau)z^i + b$

- Government’s objective
 - Social welfare maximization
 $$\max \sum_i W \left(V^i (1 - \tau, b) \right) \ \text{s.t.} \ \tau \sum_i z^i = Nb + R$$
 - General non-welfarism
 $$\max \sum_i F(c^i, z^i) \ \text{s.t.} \ \tau \sum_i z^i = Nb + R$$
 - Poverty minimization as a case of non-welfarism
 $$\sum_i F(c^i, z^i) = \sum_i D \left(c^i, \bar{c} \right) \left(= \frac{1}{N} \sum_{i=1}^h \left(\frac{\bar{c} - c^i}{\bar{c}} \right)^{\alpha} \right)$$
The model

- N individuals with labour income $z^i = w^i L^i$, consumption $c^i = (1 - \tau)z^i + b$

- Government’s objective
 - Social welfare maximization
 $\max \sum_i W(V^i(1 - \tau, b))$ s.t. $\tau \sum_i z^i = Nb + R$
 - General non-welfarism
 $\max \sum_i F(c^i, z^i)$ s.t. $\tau \sum_i z^i = Nb + R$
 - Poverty minimization as a case of non-welfarism
 $\sum_i F(c^i, z^i) = \sum_i D(c^i, \bar{c}) \left(= \frac{1}{N} \sum_{i=1}^{h} \left(\frac{\bar{c} - c^i}{\bar{c}} \right)^{\alpha} \right)$
The model

- N individuals with labour income $z^i = w^i L^i$, consumption $c^i = (1 - \tau)z^i + b$

- Government’s objective
 - Social welfare maximization
 \[
 \max \sum_i W(V^i(1 - \tau, b)) \quad \text{s.t.} \quad \tau \sum_i z^i = Nb + R
 \]
 - General non-welfarism
 \[
 \max \sum_i F(c^i, z^i) \quad \text{s.t.} \quad \tau \sum_i z^i = Nb + R
 \]
 - Poverty minimization as a case of non-welfarism
 \[
 \sum_i F(c^i, z^i) = \sum_i D(c^i, \bar{c}) \quad (= \frac{1}{N} \sum_{i=1}^{h} \left(\frac{\bar{c} - c^i}{\bar{c}} \right)^\alpha)
 \]
Outline

Introduction

Model of optimal taxation for developing countries
 Model basics
 \textbf{Linear income taxation}
 Linear income tax & Public provision of public and private goods
 Linear income tax & Commodity taxation

Summary and applications of the model
 Summary
 Applications/Future work
Results: Linear income taxation

When the government is welfaristic, we have the optimal tax rate:

$$\frac{\tau^*}{1 - \tau^*} = \frac{1}{e} (1 - \Omega)$$

- e aggregate labour supply elasticity: $e \uparrow \Rightarrow \tau \downarrow$
- Ω takes inequality into account via welfare-weighted incomes: more unequal $= \Omega \downarrow \Rightarrow \tau \uparrow$
Results: Linear income taxation

When the government is welfaristic, we have the optimal tax rate:

$$\frac{\tau^*}{1 - \tau^*} = \frac{1}{e} (1 - \Omega)$$

- e aggregate labour supply elasticity: $e \uparrow \Rightarrow \tau \downarrow$
- Ω takes inequality into account via welfare-weighted incomes: more unequal $= \Omega \downarrow \Rightarrow \tau \uparrow$
Results: Linear income taxation

When the government’s objective is to minimize poverty (deprivation $D(c^i, \bar{c})$), the optimal tax rule becomes:

$$\frac{\tau^*}{1 - \tau^*} = \frac{1}{e} \left(1 - \tilde{D}\right)$$

- $e \uparrow \Rightarrow \tau \downarrow$
- $\tilde{D} = \frac{1}{z} \frac{\sum_i D_c(z^i + (1 - \tau)z^i_{1-\tau})}{\sum_i D_c(1 + (1 - \tau)z^i_b)} = \frac{1}{z} \frac{\sum_i D_c(1 + e^i)z^i}{\sum_i D_c(1 + (1 - \tau)z^i_b)}$ measures the relative efficiency of taxes in reducing deprivation: $\tilde{D} \downarrow \Rightarrow \tau \uparrow$
- additional efficiency impact e^i within \tilde{D}: induce the poor to work more by lowering τ (on everyone) (cf. Kanbur, Keen & Tuomala 1994)
Results: Linear income taxation

When the government’s objective is to minimize poverty (deprivation $D(c_i, \bar{c})$), the optimal tax rule becomes:

$$\frac{\tau^*}{1 - \tau^*} = \frac{1}{e} \left(1 - \tilde{D} \right)$$

- $e \uparrow \Rightarrow \tau \downarrow$
- $\tilde{D} = \frac{1}{z} \sum_i D_c(z^i + (1 - \tau)z_{1-\tau}^i) = \frac{1}{z} \sum_i D_c(1 + e^i)z^i$ measures the relative efficiency of taxes in reducing deprivation: $\tilde{D} \downarrow \Rightarrow \tau \uparrow$
 - additional efficiency impact e^i within \tilde{D}: induce the poor to work more by lowering τ (on everyone) (cf. Kanbur, Keen & Tuomala 1994)
Outline

Introduction

Model of optimal taxation for developing countries
 Model basics
 Linear income taxation
 Linear income tax & Public provision of public and private goods
 Linear income tax & Commodity taxation

Summary and applications of the model
 Summary
 Applications/Future work
Results: Public provision with linear income taxation

Provision of pure public good G

When the government is welfaristic, public provision rule is:

$$\sigma^* = \frac{p - \tau \bar{Z}_G}{1 - \tau \bar{Z}_b}$$

- σ^* welfare-weighted sum of marginal rates of substitution between G and b
- RHS reflects relative cost of public provision
 - p (price of G) reflects the marginal rate of transformation
 - $\tau \bar{Z}_G$, $\tau \bar{Z}_b$ reflect tax revenue effects
Results: Public provision with linear income taxation

Provision of pure public good G

When the government is welfaristic, public provision rule is:

$$\sigma^* = \frac{p - \tau \bar{z}_G}{1 - \tau \bar{z}_b}$$

- σ^* welfare-weighted sum of marginal rates of substitution between G and b
- RHS reflects relative cost of public provision
 - p (price of G) reflects the marginal rate of transformation
 - $\tau \bar{z}_G$, $\tau \bar{z}_b$ reflect tax revenue effects
When the government’s objective is to minimize poverty (deprivation \(D = D(x^i, G, \bar{x}, \bar{G}) \)), the public provision rule becomes:

\[
D^* = \frac{p - \tau \bar{z}_G}{1 - \tau \bar{z}_b}
\]

- \(D^* = \frac{\sum_i D_G + \sum D_x(1-\tau)z^i_G}{\sum_i D_x(1+(1-\tau)z^i_G)} \) relative efficiency of \(G \) in reducing deprivation
- Additional impact on deprivation via labour supply impacts \(z^i_G \)
- RHS reflects relative cost of public provision
Results: Public provision with linear income taxation

Provision of pure public good G

When the government’s objective is to minimize poverty (deprivation $D = D(x^i, G, \bar{x}, \bar{G})$), the public provision rule becomes:

$$D^* = \frac{p - \tau \bar{Z}_G}{1 - \tau \bar{Z}_b}$$

- $D^* = \frac{\sum_i D_G + \sum D_x(1-\tau)z^i_G}{\sum_i D_x(1+(1-\tau)z^i_b)}$ relative efficiency of G in reducing deprivation
- Additional impact on deprivation via labour supply impacts z^i_G
- RHS reflects relative cost of public provision
Results: Public provision with linear income taxation

Other types of public provision

- Provision of quasi-private good $s = G + h$
 - Deprivation $D(x^i, s^i, \bar{x}, \bar{s})$: people can make private purchases h^i but total amount s^i defines deprivation
 - If do not crowd out private purchases, equal to pure public good case
 - If crowd out private purchases entirely, and provision is funded with a matching increase in tax rate, no impact on poverty

- Publicly provided good G affects productivity:
 - Consumption of good G is not valued as such ($D_G = 0$), but it has an impact on the wage rate: $z^i = w(G)L^i$ such that $w' > 0 \Rightarrow z^i_G = w \frac{\partial L}{\partial G} + w'L$
 - Public provision can be desirable even if no direct impact on individual deprivation
Results: Public provision with linear income taxation

Other types of public provision

- Provision of quasi-private good $s = G + h$
 - Deprivation $D(x^i, s^i, \bar{x}, \bar{s})$: people can make private purchases h^i but total amount s^i defines deprivation
 - If do not crowd out private purchases, equal to pure public good case
 - If crowd out private purchases entirely, and provision is funded with a matching increase in tax rate, no impact on poverty

- Publicly provided good G affects productivity:
 - Consumption of good G is not valued as such ($D_G = 0$), but it has an impact on the wage rate: $z^i = w(G)L^i$ such that $w' > 0 \Rightarrow z^G_G = w \frac{\partial L}{\partial G} + w'L$
 - Public provision can be desirable even if no direct impact on individual deprivation
Outline

Introduction

Model of optimal taxation for developing countries
 Model basics
 Linear income taxation
 Linear income tax & Public provision of public and private goods
 Linear income tax & Commodity taxation

Summary and applications of the model
 Summary
 Applications/Future work
Results: Commodity taxation with linear income taxation

Welfaristic tax rule:

$$\frac{1}{N} \sum_i \sum_j t_j \frac{\partial \tilde{x}_k^i}{\partial q_j} = \frac{1}{\lambda} \text{cov}(\gamma^i, x_k^i)$$

Poverty-minimizing tax rule:

$$\frac{1}{N} \sum_i \sum_j t_j \frac{\partial \tilde{x}_k^i}{\partial q_j} = -\frac{1}{\lambda} \left[\frac{1}{N} \sum_i D_c x_k^i + \frac{1}{N} \sum_i \sum_j D_c q_j \frac{\partial \tilde{x}_k^i}{\partial q_j} \right]$$

$$+ \frac{1}{\lambda} \text{cov} \left(D_c q_j \frac{\partial x_j^i}{\partial b}, x_k^i \right) - \frac{1}{\lambda} \text{cov} \left(\sum_j t_j \frac{\partial x_j^i}{\partial b}, x_k^i \right)$$
Results: Commodity taxation with linear income taxation

Welfaristic tax rule:

\[
\frac{1}{N} \sum_i \sum_j t_j \frac{\partial \hat{x}_k^i}{\partial q_j} = \frac{1}{\lambda} \text{cov}(\gamma^i, x_k^i)
\]

Poverty-minimizing tax rule:

\[
\frac{1}{N} \sum_i \sum_j t_j \frac{\partial \hat{x}_k^i}{\partial q_j} = -\frac{1}{\lambda} \left[\frac{1}{N} \sum_i D_c x_k^i + \frac{1}{N} \sum_i \sum_j D_c q_j \frac{\partial \hat{x}_k^i}{\partial q_j} \right] \\
+ \frac{1}{\lambda} \text{cov} \left(D_c q_j \frac{\partial x_j^i}{\partial b}, x_k^i \right) - \frac{1}{\lambda} \text{cov} \left(\sum_j t_j \frac{\partial x_j^i}{\partial b}, x_k^i \right)
\]
Results: Commodity taxation with linear income taxation

- Interpretation of welfaristic and poverty-minimizing tax rules is similar:
 - The more low-income people consume the good the more its consumption should be encouraged (when income is low, impact on D is higher)

- Uniformity result changes:
 - Deaton 1979: uniform commodity taxes ($t_j = t$) optimal only under strict assumptions (preferences separable between consumption and leisure; linear Engel curves)
 - Under poverty minimization, result does not hold even under the same assumptions - favour differentiated taxes for the benefit of the poor
Outline

Introduction

Model of optimal taxation for developing countries
 Model basics
 Linear income taxation
 Linear income tax & Public provision of public and private goods
 Linear income tax & Commodity taxation

Summary and applications of the model
 Summary
 Applications/Future work
Summary

- Use optimal tax framework to characterize comprehensive redistributive tax and transfer systems for developing countries
 - Use linear income tax (and commodity taxes) to finance universal lump-sum income transfer (and public provision of public or private goods)
 - Objective is to reduce poverty in the country
- Illustrate key tax results under these features - find that having poverty minimization as objective matters
 - Tax rules more sensitive to labour supply behaviour
 - Uniform commodity taxes are never optimal; favour differentiated commodity taxes
- Model can also be used for further developing country applications
Outline

Introduction

Model of optimal taxation for developing countries
 Model basics
 Linear income taxation
 Linear income tax & Public provision of public and private goods
 Linear income tax & Commodity taxation

Summary and applications of the model
 Summary
 Applications/Future work
Applications

Framework suitable for other developing country applications, e.g.:

- **Informality**
 - Not everyone is registered to pay taxes
 - Impacts poverty reduction efficiency

- **Low administrative capacity**
 - Part of collected tax revenue “leaks out”
 - Ineffective administration, corruption, etc.
 - Impacts poverty reduction efficiency
Applications

Framework suitable for other developing country applications, e.g.:

- **Informality**
 - Not everyone is registered to pay taxes
 - Impacts poverty reduction efficiency

- **Low administrative capacity**
 - Part of collected tax revenue “leaks out”
 - Ineffective administration, corruption, etc.
 - Impacts poverty reduction efficiency
Informality: consider a wider inability to move to the formal sector

- Formal sector: pay linear income tax τ, receive income transfer
- Informal sector: don’t pay taxes, receive income transfer
- Probability to be in the formal sector: $\kappa = \kappa(\tau, z^i(\tau, b))$
 - $\kappa' = \kappa_\tau + \kappa_z z_\tau$ where $\kappa_\tau < 0$, $\kappa_z > 0$ and $z_\tau < 0$ so that the result is $\kappa' < 0$
 - $\kappa_z z_b < 0$

Illustrates:

- smaller income transfer b for everyone because $\sum_i \kappa \tau z^i < \sum_i \tau z^i$
- but reduce poverty: the poor and informal ($\kappa_z > 0$) have disposable income $c = z + b$